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Abstract

A linear perturbation method is used to solve two-dimensional heat conduction problem in which a liquid, becomes solidified by heat
transfer to a sinusoidal mold of finite thickness. The finite difference method is used to discretize the governing equations. The molten
metal perfectly wets the mold surface prior to the beginning of solidification, and this leads to a corresponding undulation of the metal
shell thickness. The influence of physical parameters such as the thermal capacities of shell and mold materials, and mold surface wave-
length on the growth of solidified shell thickness is investigated. Analytical results are obtained for the limiting case in which diffusivities
of the solidified shell and the mold materials are infinitely large, and compared with the numerical predictions to establish the validity of
the model and the numerical approach.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Phase-change problems involving melting or solidifica-
tion are of considerable practical importance, because of
applications to the process of casting, welding and the
formation of ice [1]. In addition, preparation of semicon-
ductor-grade silicon crystals which can only be produced
by growth from the melt is an essential step in modern
solid-state physics [2]. Exact treatment of such problems
is very difficult because the location of the moving interface
is not known a priori and must follow as a part of the solu-
tion. Due to the non-linear nature of governing equations,
only a limited number of analytical solutions to such prob-
lems have been proposed. A review of literature on the sub-
ject can be found in Refs. [3,4].

During the casting process, an initially liquid mass of
material is caused to solidify by reducing its temperature
below the melting point by heat transfer from its surfaces,
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which are in contact with a surrounding mold. The process
therefore generally starts by the formation of a solidified
shell in contact with the mold and surrounding the remain-
ing liquid mass. If solidification is interrupted, periodic
thickness non-uniformities at the freezing front are often
observed that can have wavelengths of the order of several
centimeters. If solidification is allowed to proceed, how-
ever, the non-uniformities tend to die out as the freezing
front morphology becomes less dependent upon the mold–
shell interface due to the ever-thickening shell. Such micro-
structures are detrimental to subsequent forming processes
and have linked to severe ingot cracking [5]. Experimental
observations of thermo-mechanical growth instability in
casting processes have been reported by Cisse et al. [6],
Singh and Blazek [7], and Wray [8]. Theoretical models
of the proposed growth instability mechanism during solid-
ification of pure metals have been presented by Richmond
et al. [9], Yigit et al. [10], Yigit and Barber [11], and Yigit
and Hector [12,13]. It has been suggested that patterned
mold surface geometries may help to promote the uniform
growth of a casting and hence deter the onset of the
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Nomenclature

a1, a2 amplitude of the upper and lower sinusoidal
mold surfaces [m]

h0 nominal mold thickness [m]
k diffusivity [m2 s�1]
K conductivity [W m�1 �C�1]
l k/2p [m]
L latent heat of fusion [J kg�1]
m 1/l [m�1]
R0 thermal contact resistance [m2 s �C J�1]
t time [s]
T temperature [�C]
Tm melting temperature [�C]
s solidified shell thickness [m]
Q heat flux [J m�2 s�1]
x, y Cartesian coordinates [m]

Subscripts

0,1 zeroth and first-order, respectively

Superscripts

c, d shell and mold materials, respectively

Greek symbols

d space step size
�1, �2 upper and lower mold surface aspect ratios,

respectively
k wavelength [m]
q density [kg m�3]
s time increment
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observed shell thickness non-uniformities [14–16]. Mura-
kami et al. [15] proposed that periodic grooves in the mold
surface, which led to gaps of a controlled size along the
mold–shell interface due to imperfect wetting of the molten
metal, resulted in a number of important improvements.
Perhaps, the most significant improvements were more uni-
form contact along the mold–shell interface, and a reduc-
tion in crack nucleation in the ingot due to slower, but
more uniform heat extraction. To test this hypothesis, the
immersion tests were repeated for aluminum alloys using
casting molds with machined grooves [16]. A key parame-
ter that was investigated was the groove pitch or wave-
length and their impact on the shell thickness non-
uniformity. It was suggested that there was a possibility
of a wavelength selection process wherein the system
‘‘picked-off” a mold surface wavelength or band of wave-
lengths such that the shell grew with greater uniformity.
For a smooth mold surface (or at least one with no
prominent periodicity), the perturbations in heat extraction
result from stochastic variations in the mold–shell inter-
face heat flux due to a variety of process-related conditions
and material properties/metallurgical transformations. An
equally random display of thickness irregularities in the
shell results during the early stages of solidification: as
the shell thickens, the mold–shell boundary conditions
have a diminishing impact on the growth of irregularities
at the freezing front. In the idealized case of a mold surface
with a purely sinusoidal topography (for example), the con-
trolling factor is the topography geometry, since this cre-
ates a spatial perturbation in the heat extraction profile.

It is the purpose of the present paper to investigate the
combined effects of thermal capacities of the solidified shell
and mold materials, and mold surface wavelength on the
growth of solidified shell thickness in a one-dimensional
solidification process which occurs on a sinusoidal mold
of low aspect ratio (i.e., the ratio of the amplitude to wave-
length is much less than one). Thus, the present paper can
be considered as a first step toward achieving a complete
thermo-mechanical model to understand the aforemen-
tioned shell thickness non-uniformities. The present heat
conduction model can be combined to a thermoelastic
deformation model to examine the development of the
residual thermal stresses and the contact pressure at the
mold–shell interface for the analysis of thermoelastic con-
tact since the perturbation method described here provides
stability criterion for the physics of growing solid and its
deformation. In this paper, we shall obtain solution for
the advance of the solid/melt boundary. In particular, we
investigate the interactions of non-zero thermal capacities
of the shell and mold materials against each other and
mold surface wavelengths which were not studied in previ-
ous models cited above. The solution is developed by a lin-
ear perturbation method which leads to the unidirectional
unperturbed process to be uncoupled from the first-order
perturbed solution, and permits the two problems to be
solved sequentially.

2. Formulation of the problem

We consider a single-phase solidification problem where
the temperature in the liquid region is assumed to be spa-
tially uniform and constant in time, equal to the melting
temperature Tm. Solidification takes place at a distinct tem-
perature, and the solid and liquid phases are separated by a
sharp moving interface since the present analysis is
restricted by the solidification of pure materials. Initially,
there is a very thin solidified layer which is compliant to
a sinusoidal mold of mean thickness h0. Both the upper sur-
face of the mold, which is in contact with the shell along
y = 0, and the lower surface at y = �h0, have sinusoidal
surface topographies of wavelength k. The heat flux drawn
from the bottom of the mold is prescribed as a constant.
After a time t, the liquid solidified near the mold forms a
solid shell thickness s(x, t). Thus, s(x, t) defines the moving



Fig. 1. Geometry of the system.
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interface between the solid and liquid phases as shown in
Fig. 1. We assume that densities qc, qd, thermal diffusivities
kc, kd, and conductivities K c, K d of the solid phase and the
mold are constant and independent of temperature and
time. The temperature of the solidified shell and the mold
T c(x,y, t), T d(x,y ,t) must satisfy the heat conduction
equations:

r2T c ¼ 1

kc

oT c

ot
; r2T d ¼ 1

kd

oT d

ot
; t > 0 ð1Þ

which are subject to the following initial and boundary
conditions:

sðx; 0Þ ¼ l�1 cosðmxÞ ð2Þ
T cðx; s; tÞ ¼ T m ð3Þ

Kc oT c

oy
ðx; s; tÞ ¼ Lcqc os

ot
ðx; tÞ ð4Þ

Kc oT c

oy
ðx; y1; tÞ ¼ Kd oT d

oy
ðx; y1; tÞ; y1 ¼ l�1 cosðmxÞ ð5Þ

Kc oT c

oy
ðx; y1; tÞ ¼

1

R0

T cðx; y1; tÞ � T dðx; y1; tÞ
� �

ð6Þ

Kd oT d

oy
ðx; y2; tÞ ¼ Q; y2 ¼ �ðh0 þ l�2 cosðmxÞÞ ð7Þ

where Lc is the latent heat of fusion of the solidified mate-
rial and R is the thermal contact resistance at the mold/
solid interface. We define

�1 ¼ a1=l; �2 ¼ a2=l ð8Þ

as the upper and the lower mold surface aspect ratios,
respectively, where l = k/2p = 1/m and a1, a2 are, respec-
tively, the amplitudes of the upper and lower sinusoidal
mold surfaces.

Eq. (2) implies that there is a very thin solidified shell
which is compliant to the sinusoidal mold surface at initial
time. Eq. (3) states that freezing front is isothermal at the
melting temperature, while (4) defines an energy balance
between the heat conducted away from the moving inter-
face into the solidified shell and the latent heat released
during solidification. Eq. (5) states that heat flux from
the casting to the mold must be continuous. There will gen-
erally be some thermal contact resistance R0 at the mold–
shell interface due to the effects of surface roughness and
surface or contaminants films. Temperature difference
due to the imperfect contact at this interface is described
by the boundary condition (6), and heat flux is prescribed
at the bottom of the mold as given in Eq. (7).

3. The perturbation method

The modest spatial variation in the upper mold surface
leads to a corresponding spatial perturbation of the tem-
perature fields in the shell, the mold, and the freezing front
once solidification begins, i.e.

T iðx; y; tÞ ¼ T i
0ðy; tÞ þ T i

1ðy; tÞ cosðmxÞ ð9Þ
T i

1ðy; tÞ � T i
0ðy; tÞ; ði ¼ c; dÞ

sðx; tÞ ¼ s0ðtÞ þ s1ðtÞ cosðmxÞ ð10Þ
s1ðtÞ � s0ðtÞ

Notice that suffix 0 refers to the x-independent zeroth-or-
der process, and the problem has a simple one-dimensional
solution which is called the ‘‘zeroth-order” solution. How-
ever, suffix 1 refers to the amplitude of the sinusoidal per-
turbation or first-order process. It is assumed that the
amplitude of this perturbation is small in comparison with
its wavelength (i.e., ms1(t)� 1), in which case the slope of
the moving front, os/ox, is very much less than unity. It
then follows that the heat flux in the x-direction is negligi-
ble to the first-order.

Substituting Eq. (9) into the Eq. (1) and separating peri-
odic and uniform terms in x, we obtain

o2T c
0

oy2
ðy; tÞ ¼ 1

kc

oT c
0

ot
ðy; tÞ; o2T d

0

oy2
ðy; tÞ ¼ 1

kd

oT d
0

ot
ðy; tÞ ð11Þ

o2T c
1

oy2
ðy; tÞ � m2T c

1ðy; tÞ ¼
1

kc

oT c
1

ot
ðy; tÞ;

o2T d
1

oy2
ðy; tÞ � m2T d

1ðy; tÞ ¼
1

kd

oT d
1

ot
ðy; tÞ ð12Þ

Since the perturbation is small, we can expand the temper-
ature field in the vicinity of the mean solid/melt interface
position, y = s0(t), in the form of a Taylor series, in which
case boundary condition (3) can be written as

T c
0ðs0; tÞ þ

oT c
0ðs0; tÞ
oy

s1ðtÞ cosðmxÞ þ o
2T c

0ðs0; tÞ
oy2

s2
1 cos2ðmxÞ

2!

þ T c
1ðs0; tÞ þ

oT c
1ðs0; tÞ
oy

s1ðtÞ cosðmxÞ þ � � �
� �

cosðmxÞ ¼ T m

ð13Þ

Separating periodic and uniform terms and dropping sec-
ond and higher order and product terms in the small quan-
tities, T1 and s1, we obtain the two first-order equations:
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T c
0ðs0; tÞ ¼ T m ð14Þ

s1ðtÞ
oT c

0

oy
ðs0; tÞ þ T c

1ðs0; tÞ ¼ 0 ð15Þ

A similar procedure applied to the boundary condition (4)
also yields the two equations

Lcqc ds0ðtÞ
dt
¼ Kc oT c

0

oy
ðs0; tÞ ð16Þ

Lcqc ds1ðtÞ
dt
¼ Kc oT c

1ðs0; tÞ
oy

þ s1ðtÞ
o2T c

0ðs0; tÞ
oy2

� �
ð17Þ

The solid/mold boundary condition (5) and (6) give

Kc oT c
0

oy
ð0; tÞ¼Kd oT d

0

oy
ð0; tÞ ð18Þ

Kc o2T c
0

oy2
ð0; tÞl�1þ

oT c
1

oy
ð0; tÞ

� �
¼Kd o2T d

0

oy2
ð0; tÞl�1þ

oT d
1

oy
ð0; tÞ

� �

ð19Þ

R0Kc oT c
0

oy
ð0; tÞ¼ T c

0ð0; tÞ�T d
0ð0; tÞ ð20Þ

R0Kc o2T c
0

oy2
ð0; tÞl�1þ

oT c
1

oy
ð0; tÞ

� �

¼ oT c
0

oy
ð0; tÞl�1þT c

1ð0; tÞ�
oT d

0

oy
ð0; tÞl�1�T d

1ð0; tÞ
� �

ð21Þ

Finally, the boundary condition (7) at the bottom of the
mold gives the two equations

Kd oT d
0

oy
ð�h0; tÞ ¼ Q ð22Þ

oT d
1

oy
ð�h0; tÞ ¼

o2T d
0

oy2
ð�h0; tÞl�2 ð23Þ

Notice that the zeroth-order boundary conditions are iden-
tical to that for the unperturbed problem, whereas that for
the first-order includes terms derived from the zeroth-order
solution. This is typical of the procedure and permits the
two problems to be solved sequentially.

It should be noted that Li and Barber [17] developed a
linear perturbation model of a planar mold surface based
on perturbation of the classical Neumann solution. Their
model, however, did not account for the mold properties,
and therefore they determined the temperature distribution
only in the solid shell. It is therefore not possible to draw
any conclusions from their work about the effects of mold
properties on the shell thickness non-uniformity and how
the mold surface topography wavelength affects the growth
instability.
4. Dimensionless presentation

Before proceeding to the solution, it is convenient to
introduce the following dimensionless variables
Y ¼ my; S0ðbÞ ¼ ms0ðtÞ; S1ðbÞ ¼
ms1ðtÞ
�1

; H 0 ¼ mh0;

b ¼ m2 KcT m

qcLc t; T 0ðY ; bÞ ¼
T 0ðy; tÞ

T m

; T 1ðY ; bÞ ¼
T 1ðy; tÞ
�1T m

;

Q ¼ Q
mKcT m

; R ¼ mKcR0; f ¼ Kc

Kd
; a ¼ �2

�1

;

Kc ¼
KcT m

kcqcLc ; Kd ¼
KcT m

kdqcLc

ð24Þ
The governing equations (10) and (11) for T c

0ðY ; bÞ,
T d

0ðY ; bÞ and T c
1ðY ; bÞ, T d

1ðY ; bÞ then become

o
2T c

0ðY ; bÞ
oY 2

¼ Kc
oT c

0ðY ; bÞ
ob

;
o

2T d
0ðY ; bÞ
oY 2

¼ Kd
oT d

0ðY ; bÞ
ob

;

ð25Þ
o2T c

1ðY ; bÞ
oY 2

� T c
1ðY ; bÞ ¼ Kc

oT c
1ðY ; bÞ
ob

;

o2T d
1ðY ; bÞ
oY 2

� T d
1ðY ; bÞ ¼ Kd

oT d
1ðY ; bÞ
ob

ð26Þ

The boundary conditions (14), (16), (18), (20), (22), corre-
sponding to the zeroth-order temperature fields T c

0ðY ; bÞ
and T d

0ðY ; bÞ, become

T c
0ðS0; bÞ ¼ 1 ð27Þ

dS0ðbÞ
db

¼ oT c
0ðS0; bÞ
oY

ð28Þ

R
oT c

0ð0; bÞ
oY

¼ T c
0ð0; bÞ � T d

0ð0; bÞ ð29Þ

R
oT d

0ð0; bÞ
oY

¼ ffT c
0ð0; bÞ � T d

0ð0; bÞg ð30Þ

oT d
0ð�H 0; bÞ

oY
¼ fQ ð31Þ

and the boundary conditions (15), (17), (19), (21), (23), cor-
responding to the first-order temperature fields T c

1ðY ; bÞ
and T d

1ðY ; bÞ, can be written as

S1ðbÞ
oT c

0ðS0;bÞ
oY

þT c
1ðS0;bÞ¼ 0 ð32Þ

dS1ðbÞ
db

¼ oT c
1ðS0;bÞ
oY

þS1ðbÞ
o2T c

0ðS0;bÞ
oY 2

ð33Þ

o2T c
0ð0;bÞ
oY 2

þoT c
1ð0;bÞ
oY

¼ 1

R
T c

0ð0;bÞ
oY

þT c
1ð0;bÞ�

T d
0ð0;bÞ
oY

�T d
1ð0;bÞ

� �

ð34Þ
o2T d

0ð0;bÞ
oY 2

þoT d
1ð0;bÞ
oY

¼ f
R

T c
0ð0;bÞ
oY

þT c
1ð0;bÞ�

T d
0ð0;bÞ
oY

�T d
1ð0;bÞ

� �

ð35Þ
oT d

1ð�H 0;bÞ
oY

¼ a
o

2T d
0ð�H 0;bÞ
oY 2

ð36Þ

Thus, the problem is reduced to the determination of three
pairs of functions T c

0ðY ; bÞ, T d
0ðY ; bÞ, S0(b) and T c

1ðY ; bÞ,
T d

1ðY ; bÞ, S1(b) in Eqs. (25) and (26), which satisfy the
boundary conditions (27)–(36), respectively.
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5. Preview of the algorithm

Eqs. (25) and (26) with boundary conditions in (27)–(36)
cannot be solved in closed form, and therefore we must
resort to a numerical solution. There are two main
approaches to the solution of the problem. One is the front
tracking method, where the position of the moving solid–
liquid interface is continuously tracked. In this case, the
moving phase boundary requires special treatment, and
discontinuities tend to arise during time increments for
which this boundary passes through one of the grid points.
An alternative approach is to use a Lagrangian method
where variable space grid and variable time step are used.

In the present work, an explicit finite difference
Lagrangian scheme has been implemented. In this case,
the zeroth-order solid phase 0 < Y < S0(t), is divided into
a fixed number of elements N, so the space step size,
d = S0/N, increases with time due to the growth in S0(t).
This permits the last node to be identified with the zer-
oth-order solid–liquid moving front at all times, but implies
that the node locations move in time, necessitating the
inclusion of convective terms in the updating algorithm
for temperature. Thus, for example, the instantaneous zer-
oth-order solidified layer temperature field is represented
by the temperatures at the N + 1 points Y = (i � 1)d,
i = 1,2, . . .,N + 1. The increase of the shell thickness S0

during the next time increment s is determined from the
finite difference formulation of Eq. (28):

Sjþ1
0 ¼ Sj

0 þ
s

2d
ð3T j

0Nþ1
� 4T j

0N
þ T j

0N�1
Þ ð37Þ

after which the solidified layer temperatures at the interior
nodes i = 2,3, . . .,N are updated using the finite difference
form of the heat conduction equation (25a):

T jþ1
0i
¼ T j

0i
þ s

Kcd
2
ðT j

0iþ1
� 2T j

0i
þ T j

0i�1
Þ; i ¼ 2; 3; . . . ;N

ð38Þ

which can be corrected using convective terms through

T jþ1
0i
¼ T jþ1

0i
þði�1Þd

jþ1�dj

dj T jþ1
0iþ1
�T jþ1

0i

� 	
; i¼ 2;3; . . . ;N

ð39Þ

The solidified layer temperatures at node N + 1 remain at a
constant value for all times in view of Eq. (27) and that at
node 1 is updated through (29), which determines the first
difference in the first element. Essentially, the same proce-
dure is used to determine the evolution of the first-order
solidified layer temperature field, using Eqs. (32)–(36).

The choice of an appropriate value for s is motivated by
the desire for computational efficiency, while retaining
acceptable numerical convergence and stability. Extensive
investigations were made into the effect of both space and
time discretization to ensure that the final results are reli-
able. With the explicit scheme used here, the maximum
time step for stability is proportional to Kcd

2 and hence
the stability requirement generally places a restriction on
s when good spatial accuracy is desired, necessitating very
small values of d. When the thermal capacities of the shell
and mold materials are both considered in the model
numerical stability of the scheme is satisfied if

s

Kcd
2
< 0:5;

s

Kdd
2
d

< 0:5 ð40Þ

where dd and Kd are the space step size in the mold and the
dimensionless thermal capacity of the mold material,
respectively. At the beginning of the process, the solidified
shell thickness and d are very small, and therefore we need
an extremely small time step that causes the numerical pro-
cess to be very slow. However, S0 and hence d increases
during the process, permitting the time step to be increased
as the system evolves without loss of stability if the second
condition given in Eq. (40) can be removed. Otherwise, the
second condition in Eq. (40) places a very severe restriction
on the time increment, s since dd remains constant during
the process. Therefore, in the present study, extremely
small initial value of d is required to be used throughout
the whole process.

With the algorithm described above, it is clearly not pos-
sible to start at the instant of first solidification, since at
S0 = 0, all the nodes would coincide. Instead, we need to
use an asymptotic solution of the problem at small times
to provide a suitable initial condition for the numerical
algorithm at finite time. Fortunately, the limiting solution
given in the next section, which assumes that diffusivities
of the solidified shell and mold materials are both infinitely
large, becomes progressively more accurate at small times,
since the temperature drop across the solidified layer is
small at the very beginning of the process. We can therefore
start the process with a small but finite thickness, using the
limiting solution given in the following section to define the
initial values for the temperature fields in the solidified shell
and the mold.

6. Limiting solution

It can be demonstrated that the solution for Kc ? 0 and
Kd ? 0 is a limiting case of the present more general the-
ory. This simplification permits the solution to be obtained
in closed form and makes possible all the calculations to be
performed analytically. The results of limiting case are use-
ful in the development and checking of purely numerical
solution of general case, as well as in providing a start-up
solution for the general problem.

In physical terms, this simplifying assumption is equiva-
lent to the statement that the casting and the mold materi-
als have zero thermal capacity. In other words, the heat
diffusivities of the casting and the mold materials are infi-
nitely large. It then follows that Eq. (25) approximate
Laplace’s equations and in view of the condition, os/ox

� 1, that the temperature profiles in the solidified layer
and in the mold are linear in y. In this case Eq. (25) can eas-
ily be solved using the boundary conditions (27)–(31) with
the result



Table 1
Material properties for pure aluminum and iron at the melting
temperature

Property Material

Al Fe Cu

Tm (�C) 660 1536 1084
K (W/m �C) 229.4 36.2 345.4
q (kg/m3) 2650 7265 7938
L (105J/kg) 3.9 2.7 2.0
m 0.33 0.33 0.37
k (10�5m2/s) 8.2 1.61 10.2

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Numerical solution 
Numerical solution 
Analytical limiting solution 

Analytical limiting solution

S
1
(β

)

S0(β)

Λc=0.01
Λd=0.01
R=0.3
H0=5

ζ=0.1

ζ=1

Fig. 2. Numerical and analytical limiting solutions for perturbed solid-
ification front as a function of S0(b) for R = 0.3, H0 = 5, Kc = 0.01,
Kd = 0.01 for the case where n = 1 (dashed line), n = 0.1 (solid line).
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T c
0ðY ; bÞ ¼ 1þ Q½Y � S0� ð41Þ

T d
0ðY ; bÞ ¼ 1þ Q½fY � S0 � R� ð42Þ

Substituting Eq. (41) into (28) and solving the ordinary dif-
ferential equation for S0(b) we obtain the amplitude of the
unperturbed solidification front as

S0ðbÞ ¼ Qb ð43Þ

The governing equation for the first-order temperature
field in the solid phase and in the mold can be solved
remaining boundary conditions (32)–(36) with the result

T c
1ðY ; bÞ ¼ C1ðbÞ sinhðY Þ þ C2ðbÞ coshðY Þ ð44Þ

T d
1ðY ; bÞ ¼ C3ðbÞ sinhðY Þ þ C4ðbÞ coshðY Þ ð45Þ

where

C1ðbÞ ¼
1

D
ð1� fÞ coshðS0Þ sinhðH 0Þ � S1 sinhðH 0Þf g ð46Þ

C2ðbÞ ¼ �
1

D
S1 f coshðH 0Þ þ R sinhðH 0Þf gf

þð1� fÞ sinhðS0Þ sinhðH 0Þg ð47Þ
C3ðbÞ ¼ fC1ðbÞ ð48Þ
C4ðbÞ ¼ 1� fþ C2ðbÞ � RC1ðbÞ ð49Þ

where

D¼ sinhðS0Þ sinhðH 0Þ þ coshðS0Þ f coshðH 0Þ þR sinhðH 0Þf g
ð50Þ

Finally, using Eqs. (33), (41) and (44) we can obtain a dif-
ferential equation

dS1ðbÞ
db

¼ C1ðbÞ coshðS0Þ þ C2ðbÞ sinhðS0Þ ð51Þ

for the amplitude of the perturbation in solidification front,
with solution

S1ðbÞ¼
ð1�fÞsinhðH 0ÞS0þfcoshðH 0ÞþRsinhðH 0Þ

sinhðS0ÞsinhðH 0Þþ coshðS0Þ fcoshðH 0ÞþRsinhðH 0Þf g
ð52Þ

Notice that when H0 goes to zero in the above equation this
limiting solution approaches

S1ðbÞ ¼
1

coshðS0Þ
ð53Þ

which is equal to the limiting solution for zero Stefan num-
ber given in Ref. [18] where the sinusoidal mold of zero
thickness is assumed to be thermally rigid.

7. Results and discussion

We wish to examine the variation of the perturbation in
solidification front s1(t) with mean shell thickness s1(t) for
systems where the mold and shell materials are combina-
tions of pure aluminum, iron, and copper. The material
properties used in the calculations are listed in Table 1.
The symbols Tm, K, q, L, and k denote the melting temper-
ature, thermal conductivity, density, latent heat, and ther-
mal diffusivity, respectively. Although it is assumed that
each property is a temperature-independent constant, most
of the reported values were measured close to the melting
temperature of each material.

The process parameters are chosen to be R0 =
10�5 m2 s �C/J, h0 = 50 mm, a1 = 1.0 lm, and a = 0 (unless
otherwise specified).

The numerical algorithm has first been verified by com-
paring the computed results with the analytical limting
solution for the problem with zero heat capacities of the
casting and the mold materials. Notice that the parameters
Kc and Kd can be considered as describing the effect of
finite thermal diffusivities, or equivalently, of the thermal
capacities of the casting and mold materials respectively.
The two sets of curves correspond to f = 0.1 and 1. There
are two curves for each value of f: one corresponds to the
idealized case of zero heat capacities, Kc = Kd = 0 which is
obtained through analytical calculations (i.e., Eq. (52)),
and the other curve is for very small but non-zero thermal
capacities of shell and mold materials. Agreement between
the analytical and numerical solutions for small heat capac-
ities are seen to be excellent at all times as shown in Fig. 2.
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Fig. 3 shows the position of the solid-melt interface at
various values of the dimensionless time, b. As the soli-
dification proceeds the shell thickness non-uniformity
decreases. If solidification is interrupted, periodic thickness
non-uniformities at the freezing front will be observed. If
solidification is allowed to proceed, however, the non-
uniformities tend to die out as the freezing front morphol-
ogy becomes less dependent upon the mold–shell interface
due to the ever-thickening shell. It should be noted that this
theoretical result is supported by many experimental obser-
vations of thermo-mechanical growth instability in casting
processes [5–8].

Figs. 4 and 5 show the growth of mean shell thickness in
time for aluminum–iron and aluminum–copper, and cop-
per–aluminum and iron–aluminum shell–mold systems,
respectively. Note that KFe < KAl < KCu. Mold with higher
thermal conductivity causes slower growth of mean shell
thickness as seen in Fig. 4 whereas shell with higher thermal
conductivity causes faster growth of mean shell thickness as
seen in Fig. 5. In both cases, the smaller wavelengths lead
to faster growth of the mean shell thickness.

Figs. 6 and 7 show the variation of the perturbation in
solidification front s1(t) with mean shell thickness s0(t) for
an aluminum and iron shells solidifying on a copper mold,
respectively. Four curves, corresponding to wavelengths of
10 mm, 50 mm, 100 mm, and 200 mm are shown. Fig. 8
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combines the s1(t) curves separately considered in Figs. 6
and 7. The ordering of the two curves for each wavelength
in Fig. 8 is dictated by the shell thermal capacity. Perturba-
tion in solidification front s1(t) approaches zero for pure
aluminum shell faster than that of pure iron shell since
thermal capacity of aluminum is higher than that of iron.
This indicates that shell materials with higher thermal
capacities (or lower thermal diffusivities) might be less
susceptible to growth instability reported in casting exper-
iments [5–8]. Fig. 9 examines the variation of the perturba-
tion in solidification front s1(t) with mean shell thickness
s0(t) for iron–aluminum and copper–aluminum shell–mold
systems. Again, shell with higher thermal capacity causes
faster decay of s1(t) for all k values considered. It shows
that the perturbation in solidification front s1(t) diminishes
at an earlier time and thinner mean shell thickness implying
that the shell freezing front is likely to exhibit a planar
growth.

Fig. 10 shows the variation of the perturbation in solid-
ification front s1(t) with mean shell thickness s0(t) for an
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aluminum shell solidifying on an iron mold. The effect of
wavelength is similar to the one reported in previous cases
except that a little overshoot becomes evident as the wave-
lengths are decreased. This is probably because of the
shell–mold material thermal capacity ratio, Kc/Kd, effect
on the growth instability. In Figs. 6 and 7, Kc/Kd was
0.77 and 0.75, respectively (i.e., less than unity). However,
in Fig. 10, Kc/Kd = 1.02 which is larger than unity. In other
words, heat storage capacity of the shell is more than that
of mold, which might be the reason of overshoot in s1(t).
To examine the effect of mold material thermal capacity
on the growth instability, Fig. 11 is reported. This figure
combines the s1(t) curves separately considered in Figs. 4
and 10 where the shell material is kept constant as a pure
aluminum for both cases. Iron mold causes faster decay
than copper mold for each wavelength considered. This
indicates that mold materials with higher thermal capaci-
ties might be less prone to growth instability in
solidification.

Current work on this problem is focused on a fully cou-
pled version of the present problem that includes the effect
of mechanical problems (i.e., stress fields in the solidified
shell thickness and the mold, and contact pressure varia-
tions in the shell–mold interface). This requires that the
thermoelastic stress fields in the solidified shell thickness
and the mold to be added into the thermal fields presented
in this work. The present theory does not account for this
important phenomenon and, hence, predictions made
about the growth instability here are clearly very restric-
tive. It is anticipated that the fully coupled version of the
present problem may provide conclusive demonstration
of the proposed growth instability mechanism observed
in many casting experiments.
8. Conclusions

The heat conduction problem has been investigated in
which one dimensional solidification process occurs on a
sinusoidal mold of low aspect ratio (i.e., the ratio of the
amplitude to wavelength is much less than one). In partic-
ular, numerical solutions have been obtained for the
advance of the solid/melt boundary. The effect of thermal
diffusivities of the solidified shell and the mold materials
was also investigated. It was demonstrated that the solidi-
fied shell material with higher thermal capacity might result
in planar shell growth, whereas the mold material with
higher thermal conductivity may cause irregular growth of
the shell which, generally, causes cracking near the surface.
We have also briefly discussed the limiting solution for
Kc = Kd = 0, in which the zeroth-order temperature pro-
files in the solid and in the mold are linear in y. This sim-
plification permits the problem to be solved analytically.

The results of the present analysis can be used in deter-
mining the residual thermoelastic stresses in solidification
of pure metals on a sinusoidal and deformable mold sur-
face. This problem is the subject of an ongoing investiga-
tion and will be reported elsewhere.
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